上篇《社交媒体话题文本分词后用sklearn的kmeans算法做聚类分析》,我们将采集得到的知乎二舅话题的excel,导入到Gooseeker文本分词和情感分析软件,经自动分词后,导出“分词效果表”excel。基于自动分词的“分词效果表”,我们在python下使用sklearn库进行k-means聚类实验。本篇,我们在分词后再进行一步:选词。即人工方式的特征工程,以期降低维度,提高准确度。

点击下载源代码:

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
举报 使用道具
| 回复

共 0 个关于本帖的回复 最后回复于 2024-7-17 10:06

您需要登录后才可以回帖 登录 | 立即注册

精彩推荐

  • 话题分析(NMF模型和LDA模型)软件的安装和
  • 运行Apple无法验证的程序的方法
  • 文本聚类分析软件的安装和使用方法
  • 利用AI阅读和分析文本:扣子COZE记录用户反
  • 在网页片段内直观标注——以B站评论采集为

热门用户

GMT+8, 2025-1-18 18:12