三天三夜的全国大学生数学建模竞赛告一段落 从培训到比赛一直被数模虐的同学们 果然是应了那句 数模虐我千万遍 我待数模如初恋 有木有 看着同学们在群里吐槽题目太难系统太烂 仿佛就回到当年参加比赛的时候 别问我哪年参加的比赛 这么暴露年龄的问题你以为我会回答吗
先预祝大家在国赛都取得好成绩 讲到数模国赛 怎么可以不提到美赛呢 美国大学生数学建模竞赛于美国东部时间2016年1月28日20点至2月1日20点 即北京时间2016年1月29日9点至2月2日9点举行 刚好比完赛回家过大年 温馨提示 美赛报名费为每队100美元
下面给大家汇总了美国大学生数学建模竞赛2011-2015年的试题 有意愿参加2016年美赛的同学们可以先看看 看不懂的小伙伴请自行有道 好吧 后面有中文版题目的 看到英文就头痛的同学请直接往下拉 试题来源美国大学生数学建模竞赛
2011
PROBLEM A: Snowboard Course
Determine the shape of a snowboard course (currently known as a “halfpipe”) to maximize the production of “vertical air” by a skilled snowboarder.
"Vertical air" is the maximum vertical distance above the edge of the halfpipe.
Tailor the shape to optimize other possible requirements, such as maximum twist in the air.
What tradeoffs may be required to develop a “practical” course?
PROBLEM B: Repeater Coordination
The VHF radio spectrum involves line-of-sight transmission and reception. This limitation can be overcome by “repeaters,” which pick up weak signals, amplify them, and retransmit them on a different frequency. Thus, using a repeater, low-power users (such as mobile stations) can communicate with one another in situations where direct user-to-user contact would not be possible. However, repeaters can interfere with one another unless they are far enough apart or transmit on sufficiently separated frequencies.
In addition to geographical separation, the “continuous tone-coded squelch system” (CTCSS), sometimes nicknamed “private line” (PL), technology can be used to mitigate interference problems. This system associates to each repeater a separate subaudible tone that is transmitted by all users who wish to communicate through that repeater. The repeater responds only to received signals with its specific PL tone. With this system, two nearby repeaters can share the same frequency pair (for receive and transmit); so more repeaters (and hence more users) can be accommodated in a particular area.
For a circular flat area of radius 40 miles radius, determine the minimum number of repeaters necessary to accommodate 1,000 simultaneous users. Assume that the spectrum available is 145 to 148 MHz, the transmitter frequency in a repeater is either 600 kHz above or 600 kHz below the receiver frequency, and there are 54 different PL tones available.
How does your solution change if there are 10,000 users?
Discuss the case where there might be defects in line-of-sight propagation caused by mountainous areas.
2012
PROBLEM A: The Leaves of a Tree
"How much do the leaves on a tree weigh?" How might one estimate the actual weight of the leaves (or for that matter any other parts of the tree)? How might one classify leaves? Build a mathematical model to describe and classify leaves. Consider and answer the following:
• Why do leaves have the various shapes that they have?
• Do the shapes “minimize” overlapping individual shadows that are cast, so as to maximize exposure? Does the distribution of leaves within the “volume” of the tree and its branches effect the shape?
• Speaking of profiles, is leaf shape (general characteristics) related to tree profile/branching structure?
• How would you estimate the leaf mass of a tree? Is there a correlation between the leaf mass and the size characteristics of the tree (height, mass, volume defined by the profile)?
In addition to your one page summary sheet prepare a one page letter to an editor of a scientific journal outlining your key findings.
PROBLEM B: Camping along the Big Long River
Visitors to the Big Long River (225 miles) can enjoy scenic views and exciting white water rapids. The river is inaccessible to hikers, so the only way to enjoy it is to take a river trip that requires several days of camping. River trips all start at First Launch and exit the river at Final Exit, 225 miles downstream. Passengers take either oar- powered rubber rafts, which travel on average 4 mph or motorized boats, which travel on average 8 mph. The trips range from 6 to 18 nights of camping on the river, start to finish.. The government agency responsible for managing this river wants every trip to enjoy a wilderness experience, with minimal contact with other groups of boats on the river. Currently, X trips travel down the Big Long River each year during a six month period (the rest of the year it is too cold for river trips). There are Y camp sites on the Big Long River, distributed fairly uniformly throughout the river corridor. Given the rise in popularity of river rafting, the park managers have been asked to allow more trips to travel down the river. They want to determine how they might schedule an optimal mix of trips, of varying duration (measured in nights on the river) and propulsion (motor or oar) that will utilize the campsites in the best way possible. In other words, how many more boat trips could be added to the Big Long River’s rafting season? The river managers have hired you to advise them on ways in which to develop the best schedule and on ways in which to determine the carrying capacity of the river, remembering that no two sets of campers can occupy the same site at the same time. In addition to your one page summary sheet, prepare a one page memo to the managers of the river describing your key findings.
2013
PROBLEM A: The Ultimate Brownie Pan
When baking in a rectangular pan heat is concentrated in the 4 corners and the product gets overcooked at the corners (and to a lesser extent at the edges). In a round pan the heat is distributed evenly over the entire outer edge and the product is not overcooked at the edges. However, since most ovens are rectangular in shape using round pans is not efficient with respect to using the space in an oven. Develop a model to show the distribution of heat across the outer edge of a pan for pans of different shapes - rectangular to circular and other shapes in between.
Assume
1. A width to length ratio of W/L for the oven which is rectangular in shape.
2. Each pan must have an area of A.
3. Initially two racks in the oven, evenly spaced.
Develop a model that can be used to select the best type of pan (shape) under the following conditions:
1. Maximize number of pans that can fit in the oven (N)
2. Maximize even distribution of heat (H) for the pan
3. Optimize a combination of conditions (1) and (2) where weights p and (1- p) are assigned to illustrate how the results vary with different values of W/L and p.
In addition to your MCM formatted solution, prepare a one to two page advertising sheet for the new Brownie Gourmet Magazine highlighting your design and results.
PROBLEM B: Water, Water, Everywhere
Fresh water is the limiting constraint for development in much of the world. Build a mathematical model for determining an effective, feasible, and cost-efficient water strategy for 2013 to meet the projected water needs of [pick one country from the list below] in 2025, and identify the best water strategy. In particular, your mathematical model must address storage and movement; de-salinization; and conservation. If possible, use your model to discuss the economic, physical, and environmental implications of your strategy. Provide a non-technical position paper to governmental leadership outlining your approach, its feasibility and costs, and why it is the “best water strategy choice.”
Countries: United States, China, Russia, Egypt, or Saudi Arabia
2014
PROBLEM A: The Keep-Right-Except-To-Pass Rule
In countries where driving automobiles on the right is the rule (that is, USA, China and most other countries except for Great Britain, Australia, and some former British colonies), multi-lane freeways often employ a rule that requires drivers to drive in the right-most lane unless they are passing another vehicle, in which case they move one lane to the left, pass, and return to their former travel lane.
Build and analyze a mathematical model to analyze the performance of this rule in light and heavy traffic. You may wish to examine tradeoffs between traffic flow and safety, the role of under- or over-posted speed limits (that is, speed limits that are too low or too high), and/or other factors that may not be explicitly called out in this problem statement. Is this rule effective in promoting better traffic flow? If not, suggest and analyze alternatives (to include possibly no rule of this kind at all) that might promote greater traffic flow, safety, and/or other factors that you deem important.
In countries where driving automobiles on the left is the norm, argue whether or not your solution can be carried over with a simple change of orientation, or would additional requirements be needed.
Lastly, the rule as stated above relies upon human judgment for compliance. If vehicle transportation on the same roadway was fully under the control of an intelligent system – either part of the road network or imbedded in the design of all vehicles using the roadway – to what extent would this change the results of your earlier analysis?
PROBLEM B: College Coaching Legends
Sports Illustrated, a magazine for sports enthusiasts, is looking for the “best all time college coach” male or female for the previous century. Build a mathematical model to choose the best college coach or coaches (past or present) from among either male or female coaches in such sports as college hockey or field hockey, football, baseball or softball, basketball, or soccer. Does it make a difference which time line horizon that you use in your analysis, i.e., does coaching in 1913 differ from coaching in 2013? Clearly articulate your metrics for assessment. Discuss how your model can be applied in general across both genders and all possible sports. Present your model’s top 5 coaches in each of 3 different sports.
In addition to the MCM format and requirements, prepare a 1-2 page article for Sports Illustrated that explains your results and includes a non-technical explanation of your mathematical model that sports fans will understand.
2015
PROBLEM A: Eradicating Ebola
The world medical association has announced that their new medication could stop Ebola and cure patients whose disease is not advanced. Build a realistic, sensible, and useful model that considers not only the spread of the disease, the quantity of the medicine needed, possible feasible delivery systems (sending the medicine to where it is needed), (geographical) locations of delivery, speed of manufacturing of the vaccine or drug, but also any other critical factors your team considers necessary as part of the model to optimize the eradication of Ebola, or at least its current strain. In addition to your modeling approach for the contest, prepare a 1-2 page non-technical letter for the world medical association to use in their announcement.
PROBLEM B: Searching for a lost plane
Recall the lost Malaysian flight MH370. Build a generic mathematical model that could assist "searchers" in planning a useful search for a lost plane feared to have crashed in open water such as the Atlantic, Pacific, Indian, Southern, or Arctic Ocean while flying from Point A to Point B. Assume that there are no signals from the downed plane. Your model should recognize that there are many different types of planes for which we might be searching and that there are many different types of search planes, often using different electronics or sensors. Additionally, prepare a 1-2 page non-technical paper for the airlines to use in their press conferences concerning their plan for future searches.
估计大家看到一堆英文头都大了 下面附上中文版题目 PS 中文版题目均来自网上 请勿吐槽翻译水平 嫌弃中文版题目翻译得太烂的同学还是看原版题目自行翻译吧 当然还是建议大家直接看英文题目 毕竟美赛最后交的还是全英的论文呢 好吧 废话不多说 上题
2011年 问题A 请设计一个单板滑雪场(现为“半管”或“U型池”)的形状,以便能使熟练的单板滑雪选手最大限度地产生垂直腾空。 “垂直腾空“是超出“半管”边缘以上的最大的垂直距离。 定制形状时要优化其他可能的要求,如:在空中产生最大的身体扭曲。 在制定一个“实用”的场地时哪些权衡因素可能需要?
问题B 甚高频无线电频谱包含信号的发送和接受。这种限制可以被中继站所克服。中继站可以捕捉到微弱的信号,然后把它放大,再用不同的频率重新发送。这样,低功耗的用户,例如移动电话用户,在不能直接与其他用户联系的地方可以通过中继站来保持联系。然而,中继站之间会互相影响,除非彼此之间有足够远的距离或通过充分分离的频率来传送。 除了地理的分离、“连续编码音调控制系统”(CTCSS),有时被称为“私人专线”(PL)、通过这项技术可以减轻干扰问题。该系统连接每个中继站,靠的是所有通过同一个中继站连接的用户发送的独立的亚音频音调来连接。中继站只回应接收到的具有特殊PL的语调的信号。通过这个系统,两个附近的中继站可以共享相同的频率对(包括接收和发送);对于更多的中继站(并且更多的用户)可以提供在一个特定的区域。 在一个半径40英里的圆形区域,请你设计一个方案,用最少量的中继站来容纳1000同时在线用户。假设频谱范围是145到148兆赫,在中继站中的发射机的频率要么是600千赫以上,要么低于接收机频率600千赫、并且这里有54个不同的PL可用。 如果这里有10,000个用户,如何改变你的解决方案。 在由于山区引起信号传播的阻碍的地区,讨论这样的情形。
2012年 问题A 一棵树的叶子 “一棵树的叶子有多重?”怎么能估计树的叶子(或者树的任何其它部分)的实际重量?怎样对叶子进行分类?建立一个数学模型来对叶子进行描述和分类。模型要考虑和回答下面的问题: • 为什么叶子具有各种形状? • 叶子之间是要将相互重叠的部分最小化,以便可以最大限度的接触到阳光吗?树叶的分布以及树干和枝杈的体积影响叶子的形状吗? 就轮廓来讲,叶形(一般特征)是和树的轮廓以及分枝结构有关吗? • 你将如何估计一棵树的叶子质量?叶子的质量和树的尺寸特征(包括和外形轮廓有关的高度、质量、体积)有联系吗? 除了你的一页摘要以外,给科学杂志的编辑写一封信,阐述你的主要发现。
问题B 沿Big Long River露营 到Big Long River(225英里)游玩的游客可以享受那里的风景和振奋人心的急流。远足者没法到达这条河,唯一去的办法是漂流过去。这需要几天的露营。河流旅行始于First Launch,在Final Exit结束,共225英里的顺流。旅客可以选择依靠船桨来前进的橡皮筏,它的速度是4英里每小时,或者选择8英里每小时的摩托船。旅行从开始到结束包括大约6到18个晚上的河中的露营。负责管理这条河的政府部门希望让每次旅行都能尽情享受野外经历,同时能尽量少的与河中其他的船只相遇。当前,每年经过Big Long河的游客有X组,这些漂流都在一个以6个月长短的时期内进行,一年中的其他月份非常冷,不会有漂流。在Big Long上有Y处露营地点,平均分布于河廊。随着漂流人数的增加,管理者被要求应该允许让更多的船只漂流。他们要决定如何来安排最优的方案:包括旅行时间(以在河上的夜晚数计算)、选择哪种船(摩托还是桨船),从而能够最好地利用河中的露营地。换句话说,Big Long River在漂流季节还能增加多少漂流旅行数?管理者希望你能给他们最好的建议,告诉他们如何决定河流的容纳量,记住任两组旅行队都不能同时占据河中的露营地。 此外,在你的摘要表一页,准备一页给管理者的备忘录,用来描述你的关键发现。
2013年 问题A 当用方形的烤盘烤饼时,热量会集中在四角,食物就在四角(四条边的热量略小于四角)烤焦了。而用一个圆形的烤盘热量会均匀分布在整个外缘,食物就不会被边缘烤焦。但是,因为大多数烤箱是矩形的,使用圆形的烤盘不那么有效地使用空间。建立一个模型来表现热量在不同形状的烤盘的外缘的分布——包括从矩形到圆形以及介于矩形与圆形的过渡形状。 试构建一个模型来显示通过不同烤盘的外沿热量的分布情况:方形到圆形极其两者之间的其他形状。 假定: 1.方形烤箱宽长比为W/L; 2.所有参烤盘的面积必须为A; 3.给定原始条件为两个烤盘支架在烤箱中均距摆放。 构建一个模型用于在如下情境下筛选最佳烤盘形状: 1.使能放进烤箱中的烤盘数(N)最大; 2.最大化均匀热度分布(H)的烤盘形状; 3.综合考虑1和2,给上述两个指标分配权重p和(1-p)。随着W/L与p的变化,展示出结果的变化。 除了提供标准的MCM格式解答之外,为布朗尼美食杂志提供一份1-2页的广告宣传,你需要突出你的设计和结果。
问题B 无处不在的水 淡水是世界上许多地方发展的限制因素。建立一个数学模型,来确定一个有效的,可行的低成本的2013年用水计划,来满足某国(从下方的列表中选择一个国家)未来(2025年)的用水需求,并确定最优的水的计划。特别的,你的数学模型必须满足储存、运输、淡化、和节水。如果可能的话,用你的模型来讨论你的计划对经济,自然和环境的影响。提供一个非技术性的意见书给政府领导概述你的方法,以及方法的可行性和成本,以及它为什么是“最好的用水计划的选择”。 国家:美国,中国,俄罗斯,埃及,或者沙特阿拉伯。
2014 问题A:车辆右行 在一些规定汽车靠右行驶的国家(即美国,中国和其他大多数国家,除了英国,澳大利亚和一些前英国殖民地),多车道的高速公路经常使用这样一条规则:要求司机开车时在最右侧车道行驶,除了在超车的情况下,他们应移动到左侧相邻的车道,超车,然后恢复到原来的行驶车道(即最右车道)。 建立和分析一个数学模型,来分析这一规则在轻型和重型交通中的性能(即车辆较少和交通较拥堵时)。你可以研究交通流量和安全二者间的平衡,最高或最低车速限制的作用(即,过低或过高的车速限制),和/或其它在这个问题陈述中没有明确说明的影响因素。这条规则能否有效地提升交通流量?如果不能,请分析并建议一个替代方案(可能和上述规则的类型完全不同),这个方案可以提升交通流量,安全性,和/或您认为重要的其他因素。 在规定汽车靠左行驶的国家,证明您的解决方案能否简单地改变方向就可应用在这些国家,或是否要考虑额外的要求。 最后,如上所述的规则依赖于人的行为标准(即人们是否遵守这样的交通规则)。如果相同的交通情况完全在一个智能系统的控制之下——无论是道路网的部分或是行驶在道路上的车辆都嵌入了这个系统——在何种程度上,这会改变你刚才分析的结果?
问题B:大学教练的故事 体育画报,为运动爱好者杂志,正在寻找上个世纪堪称“史上最优秀大学教练”的男性或女性。建立数学模型,选出在大学曲棍球,足球,棒球或垒球,篮球,橄榄球领域(过去或现在)最好的一个或多个、男性或女性大学教练。你在你的分析中使用的时间范围对结果有影响吗?比如说,在1913年执教的情况不同于2013年?清楚地说明您的评估指标。讨论你的模型怎样在男女性别和所有可能的运动中应用。展示由你的模型得到的3个不同的运动各自排名前5的教练。 除了MCM的格式和要求,准备体育画报一份1-2页的文章,用非技术性的解释向您的体育迷阐述你的结果。
2015 问题A:根除埃博拉病毒 世界医学协会已经宣布他们的新药物能阻止埃博拉病毒并且可以治愈一些处于非晚期疾病患者。建立一个现实的,合理的并且有用的模型,该模型不仅考虑了疾病的蔓延,需要药物的量,可能可行的输送系统,输送的位置,疫苗或药物的生产速度,而且也要考虑其他重要的因素,诸如你的团队认为有必要作为模型的一部分来进行优化而使埃博拉病毒根除的一些因素,或者至少考虑当前的状态。除了你的用于比赛的建模方法外,为世界医学协会准备一份1-2页的非技术性的信,方便其在公告中使用。
问题B:寻找失踪的飞机 找回失踪的马来西亚航班MH 370。建立一个通用的数学模型,可以帮助“搜索者”制定一个可用的针对失踪飞机的搜索方案,飞机在从A点到B点飞行中,恐怕已经坠毁在开放水域中,如大西洋,太平洋,印度洋,南太平洋,或北冰洋。假设无法获取到坠落飞机的任何信号。你的模型应该认识到我们搜索的有许多不同类型的飞机,而且有许多不同类型的搜索飞机,这些飞机通常使用不同的电子设备或传感器。另外,为航空公司准备一个1-2页的非技术报告,用于他们未来的搜索计划的新闻发布会。
有兴趣的同学们可以自行研究题目 抑或上网搜下大神们的思路 希望大家在数模中不仅收获知识和友谊 还能收获好成绩 期待在群里看到大家晒成绩晒证书
|
共 0 个关于本帖的回复 最后回复于 2015-9-15 15:36